Home
Use Case
Type: Data Science Stack
Typical Use Case: Scientific computing & data analysis
Famous Usage: Research & Analytics

๐Ÿ“Š PyData Stack

NumPy ยท Pandas ยท SciPy ยท Jupyter

J

Jupyter

Interactive Notebooks
  • Exploratory coding & visuals
  • Reproducible workflows
  • Rich output (plots, tables)
โ†“
P

Pandas

DataFrames & ETL
  • Tabular data wrangling
  • GroupBy, joins, time series
  • IO for CSV/Parquet/DB
โ†“
N

NumPy

NDArray Math
  • Vectorized arrays
  • Linear algebra kernels
  • Broadcasting & ufuncs
โ†“
S

SciPy

Scientific Computing
  • Optimization & stats
  • Signal & image processing
  • Spatial, FFT, sparse ops
Workflow: Jupyter (explore) โ†’ Pandas (wrangle) โ†’ NumPy (arrays) โ†’ SciPy (algorithms) โ†’ Outputs back to Jupyter